direct product, metabelian, nilpotent (class 3), monomial, 2-elementary
Aliases: C3×C23⋊C8, C23⋊C24, C24.2C12, C22⋊C8⋊1C6, (C22×C6)⋊1C8, (C23×C6).1C4, (C2×C12).441D4, C22.2(C2×C24), (C22×C12).4C4, (C22×C4).2C12, C6.27(C23⋊C4), C6.20(C22⋊C8), C23.26(C2×C12), (C2×C6).14M4(2), C6.11(C4.D4), (C22×C12).1C22, C22.2(C3×M4(2)), (C3×C22⋊C8)⋊3C2, (C2×C6).20(C2×C8), (C2×C4).91(C3×D4), C2.1(C3×C23⋊C4), C2.3(C3×C22⋊C8), (C2×C22⋊C4).1C6, (C6×C22⋊C4).3C2, (C22×C4).6(C2×C6), C2.1(C3×C4.D4), (C22×C6).106(C2×C4), C22.23(C3×C22⋊C4), (C2×C6).118(C22⋊C4), SmallGroup(192,129)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C3×C23⋊C8
G = < a,b,c,d,e | a3=b2=c2=d2=e8=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, ebe-1=bcd, ece-1=cd=dc, de=ed >
Subgroups: 218 in 98 conjugacy classes, 38 normal (26 characteristic)
C1, C2, C2, C3, C4, C22, C22, C6, C6, C8, C2×C4, C2×C4, C23, C23, C23, C12, C2×C6, C2×C6, C22⋊C4, C2×C8, C22×C4, C24, C24, C2×C12, C2×C12, C22×C6, C22×C6, C22×C6, C22⋊C8, C2×C22⋊C4, C3×C22⋊C4, C2×C24, C22×C12, C23×C6, C23⋊C8, C3×C22⋊C8, C6×C22⋊C4, C3×C23⋊C8
Quotients: C1, C2, C3, C4, C22, C6, C8, C2×C4, D4, C12, C2×C6, C22⋊C4, C2×C8, M4(2), C24, C2×C12, C3×D4, C22⋊C8, C23⋊C4, C4.D4, C3×C22⋊C4, C2×C24, C3×M4(2), C23⋊C8, C3×C22⋊C8, C3×C23⋊C4, C3×C4.D4, C3×C23⋊C8
(1 34 15)(2 35 16)(3 36 9)(4 37 10)(5 38 11)(6 39 12)(7 40 13)(8 33 14)(17 31 41)(18 32 42)(19 25 43)(20 26 44)(21 27 45)(22 28 46)(23 29 47)(24 30 48)
(2 20)(3 17)(4 8)(6 24)(7 21)(9 41)(10 14)(12 48)(13 45)(16 44)(18 22)(26 35)(27 40)(28 32)(30 39)(31 36)(33 37)(42 46)
(1 5)(2 20)(3 7)(4 22)(6 24)(8 18)(9 13)(10 46)(11 15)(12 48)(14 42)(16 44)(17 21)(19 23)(25 29)(26 35)(27 31)(28 37)(30 39)(32 33)(34 38)(36 40)(41 45)(43 47)
(1 23)(2 24)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 41)(10 42)(11 43)(12 44)(13 45)(14 46)(15 47)(16 48)(25 38)(26 39)(27 40)(28 33)(29 34)(30 35)(31 36)(32 37)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)
G:=sub<Sym(48)| (1,34,15)(2,35,16)(3,36,9)(4,37,10)(5,38,11)(6,39,12)(7,40,13)(8,33,14)(17,31,41)(18,32,42)(19,25,43)(20,26,44)(21,27,45)(22,28,46)(23,29,47)(24,30,48), (2,20)(3,17)(4,8)(6,24)(7,21)(9,41)(10,14)(12,48)(13,45)(16,44)(18,22)(26,35)(27,40)(28,32)(30,39)(31,36)(33,37)(42,46), (1,5)(2,20)(3,7)(4,22)(6,24)(8,18)(9,13)(10,46)(11,15)(12,48)(14,42)(16,44)(17,21)(19,23)(25,29)(26,35)(27,31)(28,37)(30,39)(32,33)(34,38)(36,40)(41,45)(43,47), (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(25,38)(26,39)(27,40)(28,33)(29,34)(30,35)(31,36)(32,37), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)>;
G:=Group( (1,34,15)(2,35,16)(3,36,9)(4,37,10)(5,38,11)(6,39,12)(7,40,13)(8,33,14)(17,31,41)(18,32,42)(19,25,43)(20,26,44)(21,27,45)(22,28,46)(23,29,47)(24,30,48), (2,20)(3,17)(4,8)(6,24)(7,21)(9,41)(10,14)(12,48)(13,45)(16,44)(18,22)(26,35)(27,40)(28,32)(30,39)(31,36)(33,37)(42,46), (1,5)(2,20)(3,7)(4,22)(6,24)(8,18)(9,13)(10,46)(11,15)(12,48)(14,42)(16,44)(17,21)(19,23)(25,29)(26,35)(27,31)(28,37)(30,39)(32,33)(34,38)(36,40)(41,45)(43,47), (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(25,38)(26,39)(27,40)(28,33)(29,34)(30,35)(31,36)(32,37), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48) );
G=PermutationGroup([[(1,34,15),(2,35,16),(3,36,9),(4,37,10),(5,38,11),(6,39,12),(7,40,13),(8,33,14),(17,31,41),(18,32,42),(19,25,43),(20,26,44),(21,27,45),(22,28,46),(23,29,47),(24,30,48)], [(2,20),(3,17),(4,8),(6,24),(7,21),(9,41),(10,14),(12,48),(13,45),(16,44),(18,22),(26,35),(27,40),(28,32),(30,39),(31,36),(33,37),(42,46)], [(1,5),(2,20),(3,7),(4,22),(6,24),(8,18),(9,13),(10,46),(11,15),(12,48),(14,42),(16,44),(17,21),(19,23),(25,29),(26,35),(27,31),(28,37),(30,39),(32,33),(34,38),(36,40),(41,45),(43,47)], [(1,23),(2,24),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,41),(10,42),(11,43),(12,44),(13,45),(14,46),(15,47),(16,48),(25,38),(26,39),(27,40),(28,33),(29,34),(30,35),(31,36),(32,37)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)]])
66 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 3A | 3B | 4A | 4B | 4C | 4D | 4E | 4F | 6A | ··· | 6F | 6G | 6H | 6I | 6J | 6K | 6L | 6M | 6N | 8A | ··· | 8H | 12A | ··· | 12H | 12I | 12J | 12K | 12L | 24A | ··· | 24P |
order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 8 | ··· | 8 | 12 | ··· | 12 | 12 | 12 | 12 | 12 | 24 | ··· | 24 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 2 | ··· | 2 | 4 | 4 | 4 | 4 | 4 | ··· | 4 |
66 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 |
type | + | + | + | + | + | + | ||||||||||||||
image | C1 | C2 | C2 | C3 | C4 | C4 | C6 | C6 | C8 | C12 | C12 | C24 | D4 | M4(2) | C3×D4 | C3×M4(2) | C23⋊C4 | C4.D4 | C3×C23⋊C4 | C3×C4.D4 |
kernel | C3×C23⋊C8 | C3×C22⋊C8 | C6×C22⋊C4 | C23⋊C8 | C22×C12 | C23×C6 | C22⋊C8 | C2×C22⋊C4 | C22×C6 | C22×C4 | C24 | C23 | C2×C12 | C2×C6 | C2×C4 | C22 | C6 | C6 | C2 | C2 |
# reps | 1 | 2 | 1 | 2 | 2 | 2 | 4 | 2 | 8 | 4 | 4 | 16 | 2 | 2 | 4 | 4 | 1 | 1 | 2 | 2 |
Matrix representation of C3×C23⋊C8 ►in GL6(𝔽73)
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 64 | 0 | 0 | 0 |
0 | 0 | 0 | 64 | 0 | 0 |
0 | 0 | 0 | 0 | 64 | 0 |
0 | 0 | 0 | 0 | 0 | 64 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 72 |
72 | 0 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 0 | 72 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 | 0 |
0 | 0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 0 | 72 |
0 | 1 | 0 | 0 | 0 | 0 |
27 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,64,0,0,0,0,0,0,64,0,0,0,0,0,0,64,0,0,0,0,0,0,64],[1,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,72],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[0,27,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0] >;
C3×C23⋊C8 in GAP, Magma, Sage, TeX
C_3\times C_2^3\rtimes C_8
% in TeX
G:=Group("C3xC2^3:C8");
// GroupNames label
G:=SmallGroup(192,129);
// by ID
G=gap.SmallGroup(192,129);
# by ID
G:=PCGroup([7,-2,-2,-3,-2,-2,-2,-2,168,197,1683,1271,172]);
// Polycyclic
G:=Group<a,b,c,d,e|a^3=b^2=c^2=d^2=e^8=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,e*b*e^-1=b*c*d,e*c*e^-1=c*d=d*c,d*e=e*d>;
// generators/relations