Copied to
clipboard

G = C3×C23⋊C8order 192 = 26·3

Direct product of C3 and C23⋊C8

direct product, metabelian, nilpotent (class 3), monomial, 2-elementary

Aliases: C3×C23⋊C8, C23⋊C24, C24.2C12, C22⋊C81C6, (C22×C6)⋊1C8, (C23×C6).1C4, (C2×C12).441D4, C22.2(C2×C24), (C22×C12).4C4, (C22×C4).2C12, C6.27(C23⋊C4), C6.20(C22⋊C8), C23.26(C2×C12), (C2×C6).14M4(2), C6.11(C4.D4), (C22×C12).1C22, C22.2(C3×M4(2)), (C3×C22⋊C8)⋊3C2, (C2×C6).20(C2×C8), (C2×C4).91(C3×D4), C2.1(C3×C23⋊C4), C2.3(C3×C22⋊C8), (C2×C22⋊C4).1C6, (C6×C22⋊C4).3C2, (C22×C4).6(C2×C6), C2.1(C3×C4.D4), (C22×C6).106(C2×C4), C22.23(C3×C22⋊C4), (C2×C6).118(C22⋊C4), SmallGroup(192,129)

Series: Derived Chief Lower central Upper central

C1C22 — C3×C23⋊C8
C1C2C22C2×C4C22×C4C22×C12C3×C22⋊C8 — C3×C23⋊C8
C1C2C22 — C3×C23⋊C8
C1C2×C6C22×C12 — C3×C23⋊C8

Generators and relations for C3×C23⋊C8
 G = < a,b,c,d,e | a3=b2=c2=d2=e8=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, ebe-1=bcd, ece-1=cd=dc, de=ed >

Subgroups: 218 in 98 conjugacy classes, 38 normal (26 characteristic)
C1, C2, C2, C3, C4, C22, C22, C6, C6, C8, C2×C4, C2×C4, C23, C23, C23, C12, C2×C6, C2×C6, C22⋊C4, C2×C8, C22×C4, C24, C24, C2×C12, C2×C12, C22×C6, C22×C6, C22×C6, C22⋊C8, C2×C22⋊C4, C3×C22⋊C4, C2×C24, C22×C12, C23×C6, C23⋊C8, C3×C22⋊C8, C6×C22⋊C4, C3×C23⋊C8
Quotients: C1, C2, C3, C4, C22, C6, C8, C2×C4, D4, C12, C2×C6, C22⋊C4, C2×C8, M4(2), C24, C2×C12, C3×D4, C22⋊C8, C23⋊C4, C4.D4, C3×C22⋊C4, C2×C24, C3×M4(2), C23⋊C8, C3×C22⋊C8, C3×C23⋊C4, C3×C4.D4, C3×C23⋊C8

Smallest permutation representation of C3×C23⋊C8
On 48 points
Generators in S48
(1 34 15)(2 35 16)(3 36 9)(4 37 10)(5 38 11)(6 39 12)(7 40 13)(8 33 14)(17 31 41)(18 32 42)(19 25 43)(20 26 44)(21 27 45)(22 28 46)(23 29 47)(24 30 48)
(2 20)(3 17)(4 8)(6 24)(7 21)(9 41)(10 14)(12 48)(13 45)(16 44)(18 22)(26 35)(27 40)(28 32)(30 39)(31 36)(33 37)(42 46)
(1 5)(2 20)(3 7)(4 22)(6 24)(8 18)(9 13)(10 46)(11 15)(12 48)(14 42)(16 44)(17 21)(19 23)(25 29)(26 35)(27 31)(28 37)(30 39)(32 33)(34 38)(36 40)(41 45)(43 47)
(1 23)(2 24)(3 17)(4 18)(5 19)(6 20)(7 21)(8 22)(9 41)(10 42)(11 43)(12 44)(13 45)(14 46)(15 47)(16 48)(25 38)(26 39)(27 40)(28 33)(29 34)(30 35)(31 36)(32 37)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)

G:=sub<Sym(48)| (1,34,15)(2,35,16)(3,36,9)(4,37,10)(5,38,11)(6,39,12)(7,40,13)(8,33,14)(17,31,41)(18,32,42)(19,25,43)(20,26,44)(21,27,45)(22,28,46)(23,29,47)(24,30,48), (2,20)(3,17)(4,8)(6,24)(7,21)(9,41)(10,14)(12,48)(13,45)(16,44)(18,22)(26,35)(27,40)(28,32)(30,39)(31,36)(33,37)(42,46), (1,5)(2,20)(3,7)(4,22)(6,24)(8,18)(9,13)(10,46)(11,15)(12,48)(14,42)(16,44)(17,21)(19,23)(25,29)(26,35)(27,31)(28,37)(30,39)(32,33)(34,38)(36,40)(41,45)(43,47), (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(25,38)(26,39)(27,40)(28,33)(29,34)(30,35)(31,36)(32,37), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)>;

G:=Group( (1,34,15)(2,35,16)(3,36,9)(4,37,10)(5,38,11)(6,39,12)(7,40,13)(8,33,14)(17,31,41)(18,32,42)(19,25,43)(20,26,44)(21,27,45)(22,28,46)(23,29,47)(24,30,48), (2,20)(3,17)(4,8)(6,24)(7,21)(9,41)(10,14)(12,48)(13,45)(16,44)(18,22)(26,35)(27,40)(28,32)(30,39)(31,36)(33,37)(42,46), (1,5)(2,20)(3,7)(4,22)(6,24)(8,18)(9,13)(10,46)(11,15)(12,48)(14,42)(16,44)(17,21)(19,23)(25,29)(26,35)(27,31)(28,37)(30,39)(32,33)(34,38)(36,40)(41,45)(43,47), (1,23)(2,24)(3,17)(4,18)(5,19)(6,20)(7,21)(8,22)(9,41)(10,42)(11,43)(12,44)(13,45)(14,46)(15,47)(16,48)(25,38)(26,39)(27,40)(28,33)(29,34)(30,35)(31,36)(32,37), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48) );

G=PermutationGroup([[(1,34,15),(2,35,16),(3,36,9),(4,37,10),(5,38,11),(6,39,12),(7,40,13),(8,33,14),(17,31,41),(18,32,42),(19,25,43),(20,26,44),(21,27,45),(22,28,46),(23,29,47),(24,30,48)], [(2,20),(3,17),(4,8),(6,24),(7,21),(9,41),(10,14),(12,48),(13,45),(16,44),(18,22),(26,35),(27,40),(28,32),(30,39),(31,36),(33,37),(42,46)], [(1,5),(2,20),(3,7),(4,22),(6,24),(8,18),(9,13),(10,46),(11,15),(12,48),(14,42),(16,44),(17,21),(19,23),(25,29),(26,35),(27,31),(28,37),(30,39),(32,33),(34,38),(36,40),(41,45),(43,47)], [(1,23),(2,24),(3,17),(4,18),(5,19),(6,20),(7,21),(8,22),(9,41),(10,42),(11,43),(12,44),(13,45),(14,46),(15,47),(16,48),(25,38),(26,39),(27,40),(28,33),(29,34),(30,35),(31,36),(32,37)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48)]])

66 conjugacy classes

class 1 2A2B2C2D2E2F2G3A3B4A4B4C4D4E4F6A···6F6G6H6I6J6K6L6M6N8A···8H12A···12H12I12J12K12L24A···24P
order12222222334444446···6666666668···812···121212121224···24
size11112244112222441···1222244444···42···244444···4

66 irreducible representations

dim11111111111122224444
type++++++
imageC1C2C2C3C4C4C6C6C8C12C12C24D4M4(2)C3×D4C3×M4(2)C23⋊C4C4.D4C3×C23⋊C4C3×C4.D4
kernelC3×C23⋊C8C3×C22⋊C8C6×C22⋊C4C23⋊C8C22×C12C23×C6C22⋊C8C2×C22⋊C4C22×C6C22×C4C24C23C2×C12C2×C6C2×C4C22C6C6C2C2
# reps121222428441622441122

Matrix representation of C3×C23⋊C8 in GL6(𝔽73)

100000
010000
0064000
0006400
0000640
0000064
,
100000
0720000
001000
0007200
000010
0000072
,
7200000
0720000
001000
000100
0000720
0000072
,
100000
010000
0072000
0007200
0000720
0000072
,
010000
2700000
000010
000001
000100
001000

G:=sub<GL(6,GF(73))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,64,0,0,0,0,0,0,64,0,0,0,0,0,0,64,0,0,0,0,0,0,64],[1,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,72],[72,0,0,0,0,0,0,72,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72,0,0,0,0,0,0,72],[0,27,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0,0] >;

C3×C23⋊C8 in GAP, Magma, Sage, TeX

C_3\times C_2^3\rtimes C_8
% in TeX

G:=Group("C3xC2^3:C8");
// GroupNames label

G:=SmallGroup(192,129);
// by ID

G=gap.SmallGroup(192,129);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-2,-2,168,197,1683,1271,172]);
// Polycyclic

G:=Group<a,b,c,d,e|a^3=b^2=c^2=d^2=e^8=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,e*b*e^-1=b*c*d,e*c*e^-1=c*d=d*c,d*e=e*d>;
// generators/relations

׿
×
𝔽